
Implementation correctness for
Replicated Data Types, categorically ?

Fabio Gadducci1, Hernán Melgratti2,
Christian Roldán3, and Matteo Sammartino4

1 Dipartimento di Informatica, Università di Pisa
2 ICC – Universidad de Buenos Aires – CONICET, Argentina

3 IMDEA Software Institute
4 Royal Holloway University of London, University College London

Abstract. Replicated Data Types (rdts) have been introduced as an
abstraction for dealing with weakly consistent data stores, which may
(temporarily) expose multiple, inconsistent views of their state. In the
literature, rdts are usually presented in set-theoretical terms: Only re-
cently different specification flavours have been proposed, among them a
denotational formalism that inter alia captures specification refinement.
So far, however, no abstract model has been proposed for the implemen-
tations and their correctness with respect to specifications. This paper
fills the gap: We first give categorical constructions for distilling an op-
erational model from a specification, as well as its implementations, and
then we define a notion of implementation correctness via simulation.

Keywords: Replicated data types, Specification, Operational semantics, Func-
torial characterisation, Implementation correctness

1 Introduction

Replicated data types (rdts) are abstractions for building distributed systems
on top of weak-consistent stores, i.e., systems that tolerate temporary data in-
consistencies to favour availability. Different specification approaches for rdts
have been proposed in the literature [2–5, 7, 8, 10, 11, 14, 16]. Despite stylistic
differences, they abstractly represent the state of a system in terms of two rela-
tions defined on executed operations: visibility, which explains the partial view
of the state over which each operation is executed, and arbitration, which to-
tally orders operations and is used for resolving conflicting effects of concurrent
operations. Consider an rdt Counter , which has 0 as initial value and the oper-
ations inc to increment it and rd to read its value. By following the functional
approach proposed in [8, 7], the rdt Counter is specified as a function SCtr that

? Research partially supported by the MIUR PRIN 2017FTXR7S “IT-MaTTerS”, by
the EU H2020 RISE programme under the Marie Sk lodowska-Curie grant agreement
778233, by the UBACyT projects 20020170100544BA and 20020170100086BA, by
the PIP project 11220130100148CO and by the Leverhulme Prize PLP-2016-129.

SCtr

Ö
〈inc, ok〉
��

〈inc, ok〉
��xx

〈rd, 2〉 〈rd, 1〉

è
=



〈inc, ok〉

〈rd, 1〉

〈inc, ok〉

〈rd, 2〉

〈rd, 1〉

〈inc, ok〉

〈inc, ok〉

〈rd, 2〉

. . .


SCtr

Ö
〈inc, ok〉
��

〈rd, 0〉

è
= ∅

Fig. 1. Counter specification.

maps visibilities into sets of arbitrations, both of them represented as directed
graphs labelled by pairs 〈operation, result〉. Figure 1 illustrates two cases for the
definition of SCtr . The left-most equation considers the case in which the state
consists of four operations: two incs that return ok and two rds that respectively
returns 1 and 2. The arrows in the visibility (i.e., the graph on the left-hand side
of the equation) denotes the fact that the execution of one rd sees the effects of
the execution of the two incs while the other sees just one of them. Intuitively,
the arrows justify the values returned by each rd. In this case, SCtr maps that
visibility graph into a non-empty set of arbitrations, i.e., a set of total orders of
executed operations. While the leftmost arbitration is immediate, the rightmost
one shows that arbitrations do not necessarily preserve the order of the visibility
graph: While this may seem counterintuitive, it is a design choice that allows
more flexibility and is adopted by most of the current proposals for rdts. The
situation illustrated by the equation on the right is different, because the result
of rd is defined as 0, which is deemed inconsistent with the fact that the execu-
tion of that rd sees one inc. For this reason, SCtr maps such visibility into an
empty set of arbitrations (i.e., the visibility describes an unreachable state).

As shown in [9], a large class of functional specifications, dubbed coherent,
can be characterised as functors between the categories PIDag(L) of visibilities
and SPath(L) of sets of arbitrations, where L is a fixed set of operations labels.
In this paper, we take advantage of the functorial characterisation of specifica-
tions to develop a notion of implementation and implementation correctness for
rdts. We first provide a systematic way for recovering an operational semantics
out of a specification. This is achieved by constructing the category of elements
E(F) of the functor F associated with a specification. Objects in E(F) are pairs
〈G, P〉 describing the states of the rdt in terms of a visibility G and an arbitra-
tion P. Arrows of E(F) stand for computations. Then, by following the approach
in [12], we recover an LTS from E(F) by assigning labels to the computations
(arrows) of E(F): The labels provide the contextual information that explains
the way in which a local computation is embedded into a global context. The
obtained semantics is then an operational specification for the implementation of
the rdt. Usually, rdts are implemented by several replicas that keep their own
local state and propagate changes asynchronously. Such behaviour can be un-
derstood in terms of two labelled transition systems (LTSs): One that describes

the behaviour of a single replica, and another one, obtained by composition,
that accounts for the concurrent execution of several interacting replicas. Our
first observation is that usual implementations of well-known rdts exhibit a pre-
ordered monoidal structure on states, where the order accounts for the evolution
of the system and the monoidal operator for state composition. Consequently,
the computation space of a replica can be defined in terms of the power-domain
construction over the corresponding monoid. Then, the behaviour of a replica
can be represented by a functor that maps sequences of operations into compu-
tations. The category of elements associated with the implementation functor is
used again to recover a contextual LTS, in this case, for an implementation. Con-
sequently, implementation correctness can be straightforwardly stated in terms
of contextual simulation between the recovered LTSs. In this way, we reframe
previous ad-hoc formulations of implementation correctness by applying well-
known notions in concurrency theory, thus paving the way for the application of
more standard techniques in the analysis of rdts.

The paper is structured as follows. Sect. 2 recalls the functorial presentation
of rdts specifications [9]. Sect. 3 presents the basics of state-based implemen-
tation of rdts and the running examples. Sect. 4 recasts the set-theoretical
presentation [7] of the operational semantics of rdts in terms of categories of
elements and introduces contextual LTSs. Sect. 5 illustrates a categorical model
for implementations and characterises their correctness via simulation relations.

2 Background

Notation. Given a finite set E, a (binary) relation ρ over E, written 〈E, ρ〉, is a
subset ρ ⊆ E×E. We write ∅ for the empty relation and e ρ e′ to mean (e, e′) ∈ ρ.
A subset E′ ⊆ E is downward closed with respect to ρ if e ρ e′ implies e ∈ E′, for
all e′ ∈ E′. We write becρ for the smallest downward closed set with respect to ρ
including e ∈ E, omitting the subscript ρ if clear from the context.

Let L be a finite set of labels. A labelled graph is a triple 〈E ,≺, λ〉, where
E is the set of vertices (they actually stand for “events”, hence the notation),
≺ ⊆ E × E is the (directed) connectivity relation, i.e., e ≺ e′ means that there
is an edge from e to e′, and λ : E → L is a labelling function, assigning a label
to each vertex. A graph is acyclic if the transitive closure of ≺ is a strict partial
order. We write EG, ≺G and λG for the corresponding component of a specific
graph G. A path 〈E ,≤, λ〉 is a graph where ≤ is a total order. Given a graph
G = 〈E ,≺, λ〉 and a subset E ′ ⊆ E , we denote by G|E′ the obvious restriction
(and the same applies to a path P).

We denote with G(L) and P(L) the collections of (finite) graphs and (finite)
paths, respectively, labelled on L and with ε the empty graph. Also, when the set
of labels L is chosen, we let G(E , λ) and P(E , λ) be the collections of graphs and
paths, respectively, whose vertices are those in E and are labelled by λ : E → L.

2.1 Replicated data types

We briefly recall the functional model of rdts introduced in [7].

SmvR


〈wr(1), ok〉

��

 ##

〈wr(3), ok〉

��

〈wr(2), ok〉

�� ((
〈rd, {2}〉 // 〈rd, {2, 3}〉

 =



〈wr(1), ok〉

〈wr(2), ok〉

〈rd, {2}〉

〈wr(3), ok〉

〈rd, {2, 3}〉

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, {2}〉

〈rd, {2, 3}〉

〈wr(3), ok〉

〈rd, {2, 3}〉 · · ·

〈wr(3), ok〉 · · ·

〈wr(1), ok〉 · · ·

〈wr(2), ok〉 · · ·

〈rd, {2}〉 · · ·


Fig. 2. Specification of a multi-value Register

Definition 1 (Specifications). A specification S is a function S : G(L) →
2P(L) such that S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG).

A specification S maps a graph (interpreted as the visibility relation of a rdt)
to a set of paths (that is, the admissible arbitrations of the events). Indeed, each
P ∈ S(G) is a path over EG, hence a total order of the events in G.

Example 1 (Multi-value Register). A common abstraction of a memory cell in
a replicated system is given by a multi-value Register . Differently from a tradi-
tional register, a multi-value one may contain several values when it is updated
concurrently. Hence, we can fix the following set of labels

LmvR = {〈wr(k), ok〉 | k ∈ N} ∪ ({rd} × 2N)

where 〈wr(k), ok〉 stands for an operation that writes the integer k and 〈rd, S〉 for
a read that retrieves the (possibly empty) set of values S stored in the register.
The return value of every write operation is ok since they always succeed.

The specification is given by SmvR : G(LmvR)→ 2P(LmvR) defined as follows

P ∈ SmvR(G) iff

∀e ∈ EG.λ(e) = 〈rd, S〉 ⇒ S = {k | ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉∧
(∀e′′ ≺G e, k

′. e′ ≺G e
′′ ⇒ λ(e′′) 6= 〈wr(k′), ok〉)}

The condition on the right requires that any event e in G associated with a
read (i.e., labelled by 〈rd, S〉) returns a set S that contains all values written by
maximal (according to ≺G) concurrent updates seen by it. If this is the case, all
arbitrations are admissible, i.e., P ∈ SmvR(G) for all P, otherwise SmvR(G) = ∅.

An instance of SmvR is shown in Fig. 2, where G consists of three writes:
wr(2) overwrites wr(1), and both are concurrent with wr(3). Additionally, there
are two reads: One observes all writes (right-most at the bottom), the other
does not see wr(3) (left-most one). Both reads return the set of values written
by the maximal observed events: None of them returns 1 because it has been
overwritten by 2. A graph is mapped by SmvR to ∅ if it describes an inconsistent
configuration, e.g., if the return value of one read in Fig. 2 were changed to {1}.

According to SmvR, events can be arbitrated in any order, allowing read
events to happen before observed writes (as in the second and third path in
Fig. 2). This a common approach in the specification of rdts [4] because it allows
permissive strategies for implementation (we refer to [7] for details). If needed,
a specification can explicitly exclude arbitrations (as illustrated in Ex. 2).

Example 2 (Last-write wins Register). An alternative to the multi-value Register
is the last-write wins Register , in which every read returns the last written value
according to arbitration. We take the following set of labels

LSlwwR
= {〈wr(k), ok〉, 〈rd, k〉 | k ∈ N} ∪ {〈rd,⊥〉}

where ⊥ is the initial value of a register. Its specification SlwwR is given by

P ∈ SlwwR(G) iff


∀e ∈ EG.
λ(e) = 〈rd,⊥〉 ⇒ ∀e′ ≺G e, k

′. λ(e′) 6= 〈wr(k′), ok〉∧
λ(e) = 〈rd, k〉 ⇒ ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉∧

(∀e′′ ≺G e, k
′. e′ <P e

′′ ⇒ λ(e′′) 6= 〈wr(k′), ok〉)

According to SlwwR, a read returns ⊥ when it does not observe any write. On
the contrary, a read e returns a natural number k when it observes some event
e′ that writes k. In such case, the arbitration P must order e′ as the maximal
event (accordingly to <P) among all write operations seen by e. In this way, the
specification constrains the allowed arbitrations of a graph.

We now restrict our attention to coherent specifications, which suffice for the
standard specification of rdts [7] and are amenable to categorical characteri-
sation, as illustrated in the next section. Coherence expresses that admissible
arbitrations of a visibility graph are obtained by composing the admissible ar-
bitrations corresponding to smaller visibilities. Its formal definition relies on an
auxiliary operation for composing sets of paths. We say that the paths of a set
X = {Pi}i∈I are compatible if we have λj(e) = λk(e) for all e ∈ Ej ∩ Ek.

Definition 2 (Product). The product of a set X of compatible paths is⊗
X = {P | P is a path over

⋃
i

Ei and P|Ei ∈ X }

The product of paths is analogous to the synchronous product of transition
systems: Common elements are identified and the remaining ones can be freely
interleaved, as long as the original orders are respected. A set of sets of paths
X1,X2, . . . is compatible if

⋃
i Xi is so, and we can define

⊗
i Xi as

⊗⋃
i Xi.

Definition 3 ((Past-)Coherent Specification). Let S be a specification. We
say that S is past-coherent (briefly, coherent) if ∀G 6= ε. S(G) =

⊗
e∈EG S(G|bec).

In a coherent specification S the arbitrations of a configuration G (i.e., the
set of paths S(G)) are the composition of the arbitrations of its sub-graphs G|bec.
It can be shown that the specifications in Ex. 1 and 2 are coherent.

2.2 Categorical model of specifications

We now recall important definitions and results from [9]. We start off by intro-
ducing the category of binary relations.

Definition 4 ((Binary Relation) Morphisms). A (binary relation) mor-
phism f : 〈E, ρ〉 → 〈T, γ〉 is a function f : E → T such that e ρ e′ implies
f(e) γ f(e)′ for all e, e′ ∈ E. A morphism f : 〈E, ρ〉 → 〈T, γ〉 is past-reflecting
(shortly, pr-morphism) if t γ f(e) implies that there is e′ ∈ E such that e′ ρ e
and t = f(e′) for all e ∈ E and t ∈ T.

Past-reflecting morphisms are known under various names in different con-
texts, e.g. as bounded morphisms in modal logic. The intuition is that morphisms
add no dependencies in the past of an event, hence the chosen name.

Both classes of morphisms are closed under composition: Bin denotes the
category of relations and their morphisms and PBin the sub-category of pr-
morphisms. The category Bin has both finite limits and finite colimits, which
are computed point-wise as in Set. The structure is largely lifted to PBin: Finite
colimits and binary pullbacks in PBin are computed as in Bin. Yet there is no
terminal object, as morphisms into the singleton are clearly not past-reflecting.

Given a set of labels L, the category of labelled relations is Bin(L).

Definition 5 (Category of labelled relations). The category Bin(L) is de-
fined as the comma category Ur ↓ L, where Ur : Bin→ Set is the inclusion into
Set. Explicitly, an object in Bin(L) is a triple (E, ρ, λ) for a labeling function
λ : E → L. A label-preserving morphism (E, ρ, λ) → (E′, ρ′, λ′) is a morphism
f : (E, ρ)→ (E′, ρ′) such that λ(s) = λ′(f(s)) for all s ∈ E.

The category PBin(L) is defined analogously, with the requirement that
the morphisms are also past-reflecting. In both categories, finite colimits and
binary pullbacks always exist and are essentially computed as in Bin. Two sub-
categories are used for both the syntax and the semantics of specifications.

Definition 6 (PDag/Path). PDag is the full sub-category of PBin whose
objects are acyclic graphs, and the same for Path with respect to Bin and paths.

As for relations, suitable comma categories capture labelled paths and graphs,
which are respectively called PDag(L) and Path(L). Once more, finite colimits
and binary pullbacks always exist and are essentially computed as in Bin.

Example 3. We illustrate some labelled graphs in Fig. 3 and remark that P1 is
the only path in the figure. Note that G1 is not a path because the relation is not
transitive. There is an obvious label-preserving morphism f1 : G1 → P1, but this
is not a pr-morphism because the edge from 〈wr(1), ok〉 to 〈rd, {2}〉 in P1 is not
matched in G1. On the contrary, there is no morphism from P1 to G1. Note that
the label-preserving morphisms f2 : P1 → G2 and f3 : G2 → G3 are pr-morphisms
(and consequently, f2; f3 : P1 → G3 is so).

〈wr(1), ok〉

��
〈wr(2), ok〉

��
〈rd, {2}〉

(a) G1

〈wr(1), ok〉

��

##

〈wr(2), ok〉

��
〈rd, {2}〉

(b) P1

〈wr(1), ok〉

��

##

〈wr(3), ok〉

〈wr(2), ok〉

��
〈rd, {2}〉

(c) G2

〈wr(1), ok〉

��

��##

〈wr(3), ok〉

��

〈wr(2), ok〉

�� ''
〈rd, {2}〉 // 〈rd, {2, 3}〉

(d) G3

Fig. 3. Some labelled graphs

Model of specifications. Specifications are modelled as functors from graphs
to sets of paths. Saturation is used to define morphisms between sets of paths.

Definition 7 (Path saturation). Let P be a path and f : (EP, λP) → (E , λ) a
label-preserving function. The saturation of P along f is defined as

sat(P, f) = {Q | Q ∈ P(E , λ) and f induces a morphism f : P→ Q in Path(L)}

Saturation is generalised to sets of paths X ⊆ P(E , λ) as
⋃

P∈X sat(P, f).

Definition 8 (ps-morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2) be sets
of paths. A path-set morphism (shortly, ps-morphism) f : X1 → X2 is a label-
preserving function f : (E1, λ1)→ (E2, λ2) such that X2 ⊆ sat(X1, f).

There is a ps-morphism from set of paths X1 to set of paths X2 if any path in
X2 can be obtained by adding events to a path in X1. This notion captures the
idea that arbitrations of larger visibilities are extensions of smaller visibilities.

Example 4. Consider the label-preserving function f2 : (EP1 , λP1)→ (EG2 , λG2) in
Ex. 3. Then sat(P1, f2) contains four paths, all of them an extension of P1 ob-
tained by inserting a new event labelled by 〈wr(3), ok〉 at any arbitrary position.
Moreover, there exists a ps-morphism f : {P1} → X for any X ⊆ sat(P1, f2).

Definition 9 (Sets of Paths Category). SPath(L) is the category whose
objects are sets of paths labelled over L and arrows are ps-morphisms.

PIDag(L) is the sub-category of acyclic graphs and monic pr-morphisms: It
lacks pushouts, but these can be computed in PDag(L). We say that a functor
F weakly preserves colimits if any diagram in PIDag(L) that is a colimit (via
the inclusion functor) in PDag(L) is mapped by F to a colimit in SPath(L).

We now summarise the completeness results presented in [9], albeit slightly
rephrased for the sake of simplicity and technical convenience in our develop-
ments. We characterise pr-morphisms that add a single event > to a graph.

Definition 10 (Extension). Let f : 〈E1,≺1, λ1〉 → 〈E2,≺2, λ2〉 be a mono pr-
morphism. It is an extension along ` (shortly, `-extension) if E2 = E1 + {>},
f : E1 → E1 + {>} is the associated injection, and λ2(>) = `.

A graph G is rooted if there is an event e ∈ EG such that G = G|bec. An
extension f : G1 → G2 is a root extension if G2 is rooted. It is analogously defined
when a mono ps-morphism f : X1 → X2 is a ps-extension (along `).

Example 5. Assuming f2 and f3 in Ex. 3 are mono, then the former is an ex-
tension along 〈wr(3), ok〉 and the latter is an extension along 〈rd, {2, 3}〉. Since
G3 is rooted, f3 is a rooted extension; however, f2 is not rooted because G2 is
not. Note that f2; f3 is a pr-morphism but not an extension because the target
G3 adds two new events to the source P1. Moreover, the ps-morphisms in Ex. 4
induced by f2 are ps-extensions (along 〈wr(3), ok〉).

Definition 11. A functor F : PIDag(L) → SPath(L) is coherent if it maps
root `-extensions to `-extensions and weakly preserves finite colimits.

Coherent functors thus preserve monos. Combined with the simpler definition
of extension, now easily applied to paths, it allows for a more general presentation
of a key result in previous work [9, Theorem 33] (and an immediate instantiation
to Propositions 34 and 35 therein), as stated below.

Theorem 1. Coherent functors induce coherent specifications, and vice versa.

The core of the result above can be immediately derived from the lemma
below, which will have an interest of its own in the following pages. Intuitively,
it says that, for each graph G, a coherent functor gives a set of paths which is the
product of paths for sub-graphs of G, as required by coherence (Definition 3).

Lemma 1. Let F be a coherent functor and fi : G ↪→ Gi (i = 1, 2) mono pr-
morphisms such that EG = EG1 ∩ EG2 . Then there exists a pushout in SPath(L)

F(G) F(G1)

F(G2) F(G1)⊗ F(G2)

F(f1)

F(f2)

3 State-based implementations of replicated data types

An rdt is implemented on top of a set of replicas, which serve requests from
clients according to their local state and communicate asynchronously their local
changes. Fig. 4 illustrates a scenario involving two replicas, namely r1 and r2,
that implement a multi-value Register (as specified in Ex. 1). A horizontal line
corresponds to a replica and shows the relative order (from left to right) in which
events occur in that replica. The depicted scenario shows a concrete execution
that generates the visibility graph in Fig. 2. The two writes on r1 are totally
ordered (events 1 and 3); consequently, 2 overwrites 1. The remaining write
takes place on r2 (event 2) and is unknown to r1 until r2 propagates its changes.
Hence, the first read on r1 (event 5) returns 2, which is the last written value in
r1. Replicas communicate their local changes by using primitives snd and rcv.

r2

r1
〈wr(1), ok〉

1

〈wr(2), ok〉
3

〈rd, {2}〉
5

rcv
6

〈rd, {2, 3}〉
7

〈wr(3), ok〉
2

snd
4

Fig. 4. Execution

(read) 〈r, S〉 rd,π1S−−−−→ 〈r, S〉 (write) 〈r, S〉 wr(a),ok−−−−−→ 〈r, {(a, π2S . r)}〉

(send) 〈r, S〉 snd,〈r,S〉−−−−−→ 〈r, S〉 (rcv) 〈r, S〉 rcv,〈r′,S′〉−−−−−−→ 〈r, S ⊕ S′〉

Fig. 5. Implementation of data type multi-value Register

Event 6 in r1 denotes the synchronisation of its local state with the state of
r2, i.e., r1 becomes aware of the written value 3 (depicted by the dashed line
between events 4 and 6). Since writes in r1 and r2 are concurrent, the last read
on r1 returns the set of maximal concurrent updates, i.e., {2, 3}.

A crucial aspect in the implementation of rdts concerns the information
exchanged through snd and rcv. Under the state-based approach, replicas com-
municate their own local states [4] while they only communicate operations (or
their effects) under the operation-based approach [14]. Hereafter, we will focus on
state-based implementations. We write Σ for the set of possible states σ, σ0, . . .
of a replica, and define the behaviour of a replica implementing a specification
S : G(L)→ 2P(L) with a labelled transition system (Σ,AS ,→), where

AS = L ∪ ({rcv, snd} ×Σ)

is the set of labels that, in addition to the rdt operations, includes 〈snd, σ〉 and
〈rcv, σ〉 for replica synchronisation.

Example 6. We present an implementation for a multi-value Register based on
version vectors in [6, 15], in which each replica maintains a set with all maximal
concurrent written values. The implementation associates a version vector to
each written value to determine if two writes are concurrent or causally ordered.
A version vector is just a mapping from replicas to natural numbers. Given a set
of replicas R, (NR,≤) is the poset of version vectors, where ≤ is the standard
partial order of a function space, i.e., ∀v, v′ ∈ NR. v ≤ v iff ∀r ∈ R. v(r) ≤ v(r).

We equip version vectors with an operation . : 2N
R × R → NR that takes a

set of version vectors V and a replica r and generates a new version vector that
dominates all elements in V , defined as

(V . r)(r′) =

®
1 + max0{v(r′) | v ∈ V } if r′ = r

max0{v(r′) | v ∈ V } if r′ 6= r

where max0 denotes the maximum of a set with the provision that max0 ∅ = 0.

(read) 〈r, (t, a)〉 rd,a−−→ 〈r, (t, a)〉 (write) 〈r, (t, a)〉 wr(b),ok−−−−−→ 〈r,max{(t, a), (t′, b)}〉

(send) 〈r, (t, a)〉 snd,〈r,(t,a)〉−−−−−−−→ 〈r, (t, a)〉 (rcv) 〈r, (t, a)〉 rcv,〈r′,(t′,b)〉−−−−−−−−→ 〈r,max{(t, a), (t′, b)}〉

Fig. 6. Implementation of data type last-write wins Register.

Each replica maintains a set S ∈ 2N×N
R

of pairs (n, v), where n is a written
value and v is a version vector. We write πi for the i-th projection of a product
(and also for its obvious extension to sets of tuples), and consider N× NR ordered
by ≤, where e ≤ e′ iff π2e ≤ π2e′. Consequently, the maximal concurrent written

values in a set S ∈ 2N×N
R

are the maximal elements ‖S‖ defined as {u ∈ S |6 ∃v ∈
S, u ≤ v}. The combination S1 ⊕ S2 of two sets S1 and S2 is ‖S1 ∪ S2‖.

The behaviour of a replica implementing a multi-value Register is defined by
the LTS 〈Σ,ASmvR ,→〉 where

– Σ = R× {‖S‖ | S ∈ 2N×N
R}, i.e., each state consists of the identifier of the

replica and a set of maximal concurrent written values;
– ASmvR

= LSmvR
∪ ({snd, rcv} ×Σ), i.e., the set of labels accounts for the

operations of the rdt;
– → is given by the inference rules in Fig. 5. A read returns the set of locally-

stored values (π1 discards all version vectors), while a write updates the local
state with a singleton containing the written value and a version vector that
dominates all known values. Rule (send) propagates the local state while (rcv)

combines the local state with the one received from another replica.

Example 7. We now describe the implementation based on timestamps proposed
in [15] for the last-write wins Register in Ex. 2. Let (T, <) be the totally-ordered
set of timestamps. Then, the implementation is the LTS 〈Σ,ASlwwR

,→〉 where

– Σ = R× (T× (N ∪ {⊥})), i.e., the state 〈r, (t, a)〉 of a replica r contains the
current value a of the register and its associated timestamp. We establish
that ⊥ < n for all n ∈ N and consider T × (N ∪ {⊥}) lexicographically
ordered, i.e., (t, a) ≤ (t′, a′) when either t < t′ or t = t′ and a ≤ a′.

– ASlwwR
= LSlwwR

∪ ({snd, rcv} ×Σ) is the set of the data type operations;
– → is given by the inference rules in Fig. 6. As for the multi-value Register, a

read just retrieves the value stored in the replica but does not alter its state.
A write may change the state of the replica by picking the maximum pair
according to lexicographic order. The timestamp t′ on the right-hand-side of
the rule (write) should be understood as any t′ ∈ T. Rules (send) and (rcv) are
analogous to the previous example.

4 From specifications to LTS

We can exploit the structure of coherent functors to recover an operational in-
terpretation of specifications. In the following, we consider a coherent functor

F : PIDag(L) → SPath(L). We construct its category of elements, which is
reminiscent of the category of elements for a presheaf (see e.g. [13, Chapter 5]).
Following this analogy, given a pr-morphism f : G→ G1 and P ∈ F(G), we denote
F(f)(P) the set of paths in F(G1) that are in the “image” of P via F(f), formally
specified as F(G1) ∩ sat(P, f).

Definition 12 (Category of elements). The category of elements E(F) of
F is obtained as follows

– objects are pairs 〈G, P〉, such that G ∈ PIDag(L) and P ∈ F(G);
– arrows f : 〈G, P〉 → 〈G1, P1〉 are pr-morphisms f : G → G1 such that P1 ∈

F(f)(P).

Intuitively, arrows in E(F) stand for the possible ways a path in F(G) can
evolve according to F(f). The category E(F) is clearly an LTS, since each cat-
egory is so. We note that our way of distilling an LTS is similar to how one
obtains an LTS from a relation presheaf [17, Definition 4.1].

Example 8. Consider the functor M(SmvR) induced by the coherent specifica-
tion SmvR in Ex. 1. An object 〈G, P〉 of the category of elements E(M(SmvR))
represents a state of the rdt where the events in the visibility graph G are arbi-
trated according to P ∈ SmvR(G). An arrow f : 〈G, P〉 → 〈G1, P1〉 in E(M(SmvR))
describes a computation where the visibility G is extended to G1 and the ar-
bitration P to P1. For instance, take the graphs G2 and G3 in Fig. 3c and
Fig. 3d, and the unique pr-morphism f : G2 → G3. If P2 is a total order of the
events in G2, then there is a ps-morphism f : {P2} → sat(P2, f). Moreover,
SmvR(G3) ∩ sat(P2, f) = sat(P2, f) because SmvR imposes no constraint on the
admissible arbitrations of a consistent visibility. Therefore, there is a morphism
f : 〈G2, P2〉 → 〈G3, P3〉 for any P3 ∈ sat(f, P2) in E(M(SmvR)).

A pr-morphism may not induce an arrow in the category of elements, as
f : G2 → G4 with G2 from Fig. 3c and G4 its root extension along 〈rd, {1}〉.
Indeed, SmvR(G4) = ∅, and hence M(SmvR)(f)(P) = ∅ for any P ∈ SmvR(G2).

An analogous situation occurs when the specification restricts the allowed
arbitrations, as SlwwR in Ex. 2. Consider the root extension f : G → G1 along
〈rd, {2}〉, with G1 as in Fig. 3a and G is G1 without the event 〈rd, {2}〉. Then
we have SlwwR(G1) = {P1}, and SlwwR(G) contains two paths: P, which keeps
the order of writes as in P1, and P′, which inverts it. The latter cannot be
extended to any path in SlwwR(G1), as writes are in the wrong order. In fact,
there is no f : 〈G, P′〉 → 〈G1, P1〉 in E(M(SlwwR)). Contrastingly, we have that
f : 〈G, P′〉 → 〈G1, P′′〉 is an arrow of E(M(SmvR)) for any P′′ ∈ sat(f, P′), as the
order of writes is irrelevant for SmvR.

4.1 One- and Multi-replica LTSs

In [7, Definition 16] an LTS modelling the operational behaviour of a single
replica – one-replica in short – is derived from a specification as follows

〈G, P〉 `−→ 〈G1, P1〉 ⇐⇒ G1 = G`, P1|EG = P

where G` is the root extension along ` of G. That is, a pair evolves to one where
the visibility relation is augmented with a top event labelled ` and the path is
obtained by adding the new event to P. This way of augmenting the visibility
can be formalised as a root `-extension. In fact, the one-replica LTS precisely
corresponds to a sub-category of E(F) consisting only of such extensions.

Lemma 2. Let Eo(F) be E(F) restricted to root `-extensions, for all ` ∈ L.
Then the one-replica LTS coincides with the LTS for Eo(F).

This is easily seen: Each root `-extension corresponds uniquely to a `-labelled
one-replica transition, and between any two graphs there is at most one root
extension, so that also the label is implicitly recovered.

The next step is to characterise multi-replica LTS as in [7, Definition 20],
which model multiple replica evolving concurrently. We recall the main concepts.
Suppose we have two replica, and the current state for each is 〈Gi, Pi〉. Let us
further assume that G1 and G2 are compatible [7, Definition 19], i.e., there is a
span fi : G → Gi of mono pr-morphisms such that EG = EG1 ∩ EG2 (thus, shared
nodes have the same labels). Finally, let G1 t G2 (which is just set-theoretical
union) and the obvious morphisms be the pushout. Then a replicated state is of
the form 〈G1 t G2, P〉, where P ∈ P1 ⊗ P2, i.e., P is obtained by “synchronising”
the individual arbitrations. The multi-replica LTS is derived from the one-replica
LTS by adding the following inference rule

(Comp)
〈G1, P|EG1 〉

`−→ 〈G′1, P′1〉 P′ ∈ P⊗ P′1

〈G1 t G2, P〉
`−→ 〈G′1 t G2, P′〉

Intuitively, global computations are derived from computations of single replica.
We can recover the multi-replica LTS by exploiting the structure of coherent

functors. We need two technical lemmata. The first says that certain pushouts in
SPath(L) can be decomposed as pushouts over singleton path sets. The second
says that every extension is determined by a root extension along the same label.

Lemma 3 (Decomposition). Consider the following diagrams in SPath(L)

X X2

X1 X1 ⊗X2

f2

f1 f3

f4

{P} {P2}

{P1} P1 ⊗ P2

f2

f1 f3

f4

If the diagram on the left is a pushout, then for all P1 ∈ X1 and P2 ∈ X2 there
are pushouts as shown on the right such that fi and fi have the same underlying
function on events.

Lemma 4. Let f : G → G1 be a pr-morphism in PIDag(L). Then it is an
`-extension if and only if there exists a pushout in PDag(L)

G G1

G G1

f

f

such that f is a root `-extension.

We now show that transitions of the multi-replica LTS are precisely those
corresponding to `-extensions. Intuitively, an `-extension describes a “local” aug-
mentation of a graph, corresponding to a step of computation of a single replica.

Proposition 1. Let Em(F) be E(F) restricted to `-extensions, for all ` ∈ L.
Then the multi-replica LTS coincides with the LTS for Em(F).

Example 9. Consider once more the category M(SmvR) discussed in Ex. 8. By
Lem. 2, the behaviour of a single replica is characterised by morphisms asso-
ciated with root extensions. The morphism f : 〈G2, P2〉 → 〈G3, P3〉 described in
Ex. 8 corresponds to a one-replica transition with label 〈rd, {2, 3}〉. In fact, its
underlying pr-morphism f : G2 → G3 is a root extension, accounting for the occur-
rence of the event 〈rd, {2, 3}〉 that sees any other event in the configuration; this
may happen locally if all events in other replicas have been already propagated.
Contrastingly, the extension f′ : P1 → G2 accounts for a new event 〈wr(3), ok〉
that is unaware of any other event, and hence, executed in a completely differ-
ent replica. This corresponds to multi-replica transitions f′ : 〈P1, P〉 → 〈G2, P′〉,
where P′ arbitrates the additional event 〈wr(3), ok〉 anywhere in P. The local
one-replica execution originating this transition is obtained via Lem. 4: It is
f : 〈∅, ∅〉 → 〈〈wr(3), ok〉, 〈wr(3), ok〉〉 (here we write 〈wr(3), ok〉〉 for the one-node
graph/path), with the underlying pr-morphism ∅ → 〈wr(3), ok〉 a root morphism.

4.2 Contextual LTS

So far, the category of elements allowed to recast the set-theoretical presentation
of one- and multi-replica LTSs. However, its strength is in allowing to obtain a
new LTS that is reminiscent of the category of contexts à la Leifer-Milner [12],
where arrows represent contexts enabling a transition from the source to the
target of the arrow. Here, observations are pairs of an event plus an embedding
that records how the resulting local visibility embeds into the global one. These
additional observations will be needed for defining a correct notion of simulation.

Definition 13. The context LTS is obtained by taking elements 〈G, P〉 of E(F)
as states, and by labelled transitions triples

〈G, P〉 〈f,f〉−−−→ 〈G1, P1〉

such that f : 〈G, P〉 → 〈G1, P1〉 and f : 〈G1, P1〉 → 〈G1, P1〉 are arrows of E(F) and
there exists a pushout in PDag(L)

G G1

G G1

f

f

Note that each arrow f : 〈G, P〉 → 〈G1, P1〉 of E(F) induces at least one labelled
transition (it suffices to consider for f the identity of G1), but they could actually
be more. In fact, all labels can be constructively obtained, since in PDag(L)
pushouts along monos are also pullbacks, and the arrow [f, f] : G + G1 → G1
uniquely induced by the coproduct must be epi.

Also note that if we restrict to consider only injections, the pair 〈f, f〉 is
uniquely characterized by 〈G1, P1〉. In order to simplify some definitions, in the
following we abuse notation and denote as 〈G1, P1〉 such a label 〈f, f〉.

Finally, it is noteworthy that the context LTS includes also the one- and
multi-replica, as stated by the result below.

Lemma 5. The LTS for Eo(F) (Em(F)) coincides with the restriction of the
contextual LTS to transitions whose labels are pairs 〈f, id〉, where f is a root
extension (an extension, respectively).

For the former, note that if f is a root extension, then a mono pr-morphism
forming a pushout square has to be an isomorphism. Instead, should f be an
extension, a few alternatives for the second component of the label are available,
such as taking for G1 the smallest graph such that GtG1 = G1. However, the choice
is immaterial for our later results on simulation, and further abusing notation
we simply denote as ` a label 〈f, id〉 such that f is an `-extension.

Example 10. Consider the multi-replica transition arrow f′ : 〈P1, P〉 → 〈G2, P′〉
of Ex. 9. Since we have the arrow f : 〈∅, ∅〉 → 〈〈wr(3), ok〉, 〈wr(3), ok〉〉 in the
category of elements, f′ yields the following context LTS transition

〈P1, P〉
〈f′,f′〉−−−−→ 〈G2, P′〉

where f
′

is the embedding of the one-node graph 〈wr(3), ok〉 into G2. As men-
tioned, we can just use 〈〈wr(3), ok〉, 〈wr(3), ok〉〉 as label, since this is uniquely
determined. This label conveys the information about the resulting visibility and
arbitration pair for the acting replica.

5 Implementation model

In this section we present our model for implementations. Similarly to what we
have done for specifications, the aim is to obtain implementation LTSs as the cat-
egory of elements of suitable functors. Our models are based on a power-domain
construction, modelling non-determinism. We will show that we can capture
several rdts, and characterise implementation correctness via simulation.

5.1 Implementations as functors over power-domains

Our model for implementations is inspired by [17], where LTSs are modelled as
functors from the free monoid over labels, represented as a one-object category,
to a suitable category of non-deterministic computations. This allows modelling
sequences of transitions as compositions of computations. In our setting, we in-
troduce a one-replica category representing the free monoid of labels of a replica.

Definition 14 (One-replica category). The one-replica category IR is the
category with one object, and where morphisms are words over L ∪ {rcv}.

In order to capture the behaviour of a set of replicas R, we need to account
for the fact that single replicas must show the “same” behaviour. For instance, in
the multi-value Register implementation LTS (see Ex. 6), the (Write) operation
on two replicas r and s have to return exactly the same set of version vectors
NR, up to a swapping of r and s in their domain.

We formalise this constraint by introducing the category IR(R), containing
#R isomorphic copies of IR. That is, that category comes equipped with isomor-
phisms ιr,s : r → s for each r, s ∈ R such that ιr,r = idr = ιr,s; ιs,r. Furthermore,
we require a naturality condition, namely, for all words w over L∪{rcv} we have
ιr,s;w = w; ιr,s. This constraint precisely enforces the requirement on the be-
haviour of the single replicas, which are now the same up to naturality. For the
sake of clarity, we usually suffix arrows associated to elements of L∪{rcv} with
the replica they belong to, e.g. ` : r → r is denoted as `r.

We now move to define a category where the arrows of IR(R) are interpreted
as non-deterministic computations. Here we assume a category M where objects
are states and arrows stand for sets of deterministic computations. We shall see
later how to instantiate M for rdts.

Definition 15 (Power-domain category). Let M be a small category. Then,
its power-domain P(M) is the category whose objects are sets of objects of M
and arrows are pairs (R, {fi}i∈R) : X → Y such that R ⊆ X×Y is a relation and
{fi}i∈R is a family (indexed by pairs 〈x, y〉 in R) of non-empty sets of arrows in
M such that f〈x,y〉 ⊆ HomM[x, y]. If M is (symmetric) monoidal, so is P(M).

An element of f〈x,y〉 is thus an arrow in M from x to y. For simplicity, we
often denote {fi}i∈R as fR. Also, given element x ∈ X and morphism (R, fR) :
X → Y , we denote as (R, fR)(x) the set {y | 〈x, y〉 ∈ R}.

Definition 16 (Implementation). Let M be a category. An implementation
of R in M is a functor I : IR(R)→ P(M) such that I(r) = I(s) for all r, s ∈ R.

An implementation functor thus maps each replica into the same set of pos-
sible states S, and the arrows of a replica are (morally) mapped to relations
over S × S. More precisely, I(g)(x) is the set of states that are reachable from x
after observing g; this will be used later on to synthesise the corresponding LTS.
The naturality of the isomorphisms ιr,s guarantees that the replicas exhibit the
“same” behaviour, yet only up to isomorphism, which takes care of the possible
permutations among replicas.

5.2 From implementations to replica LTSs

We now define the category of elements E(I) for an implementation I as in
Definition 12. It is rewritten here for the sake of clarity.

Definition 17 (Category of elements, II). The category of elements E(I)
of I is obtained as

– states are pairs 〈r, x〉, such that r ∈ R and x ∈ I(r);
– arrows g : 〈r, x〉 → 〈s, y〉 are arrows g : r → s such that y ∈ I(g)(x).

It now suffices to apply the machinery used for obtaining context LTSs.

Definition 18 (Implementation LTS). The implementation LTS is obtained
by taking elements 〈r,m〉 of E(I) as states, and by labelled transitions triples

〈r,m〉 〈g,g〉−−−→ 〈r, n〉

such that g : 〈r,m〉 → 〈r, n〉 and g : 〈s, o〉 → 〈r, n〉 are arrows of E(I).

We restricted to transitions over the same replica, but of course this is just
for convenience, since all our examples fit into this pattern. Also, note that each
arrow g : 〈r,m〉 → 〈r, n〉 of E(I) induces at least one labelled transition.

5.3 Deterministic computations

Given a state, what we need is the possibility for it to a) evolve towards a
different state and b) be combined with other states. We formalise these ideas
via pre-ordered monoids, i.e., structuresM = 〈M,≤,⊗, 1〉 consisting of a set M ,
a pre-order≤⊆M×M , and an associative binary operation⊗ : M×M →Mwith
an identity element 1 ∈M such that 1 ≤ x and x ≤ y implies x⊗ w ≤ y ⊗ w.5

Remark 1. In order to take into account the isomorphic behaviour of distinct
replicas, the pre-ordered monoid M should come equipped with a group action
that preserves both the order and the monoidal structure of M. However, all
our cases will fit the bill. First of all note that given a set N , the cartesian
product M ×M and the function space MN are pre-ordered monoids, with
M a sub-monoid of MN and MN ×MN equal to (M×M)N . Also, MN is
equipped with a group action Π(N) ×MN → MN given by the permutation
group Π(N) on N , and if X,Y are sub-monoids of MN that are closed under
the group action, then also the sub-monoid X×Y of (M×M)N is closed. Thus,
all of our examples fit into the shape MR, for R the set of replicas at hand.

5 Note that this is more general than the lattice of states proposed in [14]. First of
all, we consider a pre-order instead of a partial order, and furthermore we do not
require ⊗ to be induced by ≤. This weakening results in an algebraic structure that
allows for modelling a large family of rdts.

Example 11. Let us consider the multi-value Register from Ex. 1. Recall that
states of a replica r consist of a sets of pairs (n, v) ∈ N × NR, where n is a
written value and v is a version vector. In the implementation (Fig. 5) these sets
can evolve to: a) themselves (rules (Read) and (Send); b) to a set containing
a pair dominating the source state (rule (Write)) and to a set obtained as the
combination of the source state and the received one (rule (Rcv)).

These evolutions can be modeled as a pre-ordered monoid structure over

2N×N
R

, namely M = 〈2N×NR
,≤,⊕, ∅〉, where ≤ and ⊕ are defined as in Ex. 6.

Example 12. Consider the implementation of last-write wins Register in Ex. 7.
The current state of replica r consists of a timestamp t ∈ T and the value in the
register a ∈ N ∪ {⊥}. The evolution of pairs 〈t, a〉 in the implementation is cap-
tured via the pre-ordered monoid 〈T× N⊥,≤,max, 〈⊥,⊥〉〉, where ≤ stands for
lexicographic order and max{p, q} = q if and only if p ≤ q. This max operation
is precisely what is used to define the rules (Write) and (Rcv) in Fig. 6.

Given a pre-ordered monoid M modelling the deterministic behaviour of
replicas, we can easily derive a category of deterministic computations. This is
intended to be used as base category for the power domain construction of § 5.1.

Definition 19 (Category of deterministic computations). The category
C(M) has objects the elements ofM and arrows are defined for all m,n elements
ofM as follows: fm,n : m→ n if m ≤ n, with fm,m = idm and fn,m; fm,o = fn,o.

Note that C(M) is a strict monoidal category, inheriting its structure from
M. It is a thin category (for each pair of objects there is at most one arrow)
and it is strictly symmetric if ⊗ is commutative, yet it is not skeletal, since
isomorphisms are not identities. All arrows are mono as well as epi, and 1 is the
initial object, while pushouts and pullbacks do not necessarily exist.

Example 13. The corresponding category of computations C(M) for the imple-

mentation of a multi-value Register (Ex. 11) has sets S ∈ 2N×N
R

as objects
and arrows fS,S′ : S → S′ with S ≤ S′. We may attempt to interpret labels
as arrows of C(M), which would work for the operations of the data type, i.e.,
wr and rd, even if the latter might be partial. For rcv, however, the target of
each arrow would depend on the received state. We avoid considering different
receive operations, and we describe them non-deterministically via the power-
domain construction. In fact, the objects of P(C(M)) are sets of sets of pairs, i.e.,

X ⊆ 2N×N
R

. Each arrow (R, fR) : X → Y represents a computation in which a
replica starting on some state S ∈ X will end up in some state S′ ∈ (R, fR)(S).

With the monoidal structure in place, we instantiate our development of the
previous section and obtain an implementation LTS better suited for our notion
of simulation. Implementation functors are of the form I : IR(R) → P(C(M)),
with M a pre-ordered monoid, and the derived replica LTS has transitions

〈r,m〉 〈g,g〉−−−→ 〈r, n〉

where m and n are elements of the monoid. We impose the further requirement
that rcv must accept any possible state that it receives, so that I(r) is a sub-
monoid of M and I(rcvr)(m) = m ⊗ I(r) for all r ∈ R and m ∈ I(r). This
implies that I(rcvr) = I(rcvs) for all r, s ∈ R and that the operation behaves
symmetrically, i.e. m⊗o ∈ I(rcvr)(m)∩ I(rcvr)(o) for all r ∈ R and m, o ∈ I(r).

Finally, with an abuse of notation, we denote as ` the label 〈`, idr〉 and as
〈s, o〉 the label 〈rcv, g〉 such that g : 〈s, I(ιr,s)(o)〉 → 〈r,m ⊗ o〉 is obtained by
composing the arrows ιs,r : 〈s, I(ιr,s)(o)〉 → 〈r, o〉 and rcvr : 〈r, o〉 → 〈r,m ⊗ o〉
(noting that there is no ambiguity since I(ιr,s)(o) is a singleton).

Example 14. We now consider the implementation functor I for the multi-value

Register. We have I(r) = {‖S‖ | S ∈ 2N×N
R}, i.e., a set containing all sets of

maximal pairs. An arrow in IR(R) (i.e., a sequence of operations) is mapped
by I to an arrow I(r) → I(r). For instance, I(〈wr(a), ok〉r) is defined such that
I(〈wr(a), ok〉r)(S) = {{(a, π2S.r)}} for all S ∈ I(r), i.e., wr(a) can be performed
over any state S, and this operation (deterministically) changes the state by a
set containing just a pair with the written value and a dominating version vector.
Analogously, I(〈rd, V 〉r) is defined such that I(〈rd, V 〉r)(S) = {S} if π1S = V
and I(〈rd, V 〉r)(S) = ∅ otherwise, i.e., a read operation that returns V can be
performed only over a state S that contains exactly the values V , otherwise such
an operation cannot occur. Finally, I(rcvr)(S) = {S ⊕ S′ | S′ ∈ I(r)}, i.e., a
receive can augment the state S with any received state S′.

Now, the category of elements for the functor I introduced above generates
the transition system in Fig. 5, if we disregard labels. Labels are actually recov-
ered by the corresponding implementation LTS; in particular the label 〈rcv, g〉
makes the connection between the received state and the target of the arrow,
which is analogous to rule (Rcv).

5.4 Implementation correctness via simulation

We are now ready to characterise implementation correctness as a simulation
relation between the context LTS and the implementation LTS for a given rdt.
The starting point is what usually occurs in higher-order calculi: Since the label
of a transition may be a process, the notion of simulation has to take also labels
into account. Thus, our proposal is the following.

Definition 20 (Implementation correctness). Let S be a specification, CS
the context LTS, and IS the implementation LTS. An implementation relation
RS is a relation between states in IS and CS such that if (σ, 〈G, P〉) ∈ RS then

1. if σ
`−→ σ′ then ∃G′, P′ such that 〈G, P〉 `−→ 〈G′, P′〉 and (σ′, 〈G′, P′〉) ∈ RS ;

2. if σ
σ′

−→ σ′′ then ∃G′, G′′, P′, P′′ such that 〈G, P〉 〈G
′,P′〉−−−−→ 〈G′′, P′′〉, (σ′, 〈G′, P′〉) ∈

RS , and (σ′′, 〈G′′, P′′〉) ∈ RS .

We write ∼S for the largest implementation relation.

Given the way we distilled labels, the definition above does coincide with the
notion of implementation correctness as given in [7, Definition 21]. A distinction
between one- and multi-replica simulation can be recovered just by suitably
restricting the context LTS, that is, item 1 above, by requiring ` to be arising
from either a root extension or an extension, respectively.

6 Conclusions and further works

In our paper we considered rdts, and we laid out the basis for an algebraic
characterisation of their operational semantics as well as of their implementation
correctness in terms of (higher-order) simulation. The core of our contribution
lies precisely in the formalism behind such characterisations. Our proposal builds
on [9] and improves [7] and similar set-theoretical characterisations, which are
now made precise and recast into standard notions from the literature, thus
allowing for the use of a large body of methods and techniques in the analysis of
rdts. We offered a few examples for showing the adequateness of our proposal,
even if its strength need to be further checked by a larger number of case studies.

In order to stress the methodological points, we adopted some simplifications.
The most notable is the removal of the snd label from our transition systems.
Indeed, in our examples, and, in in fact, in most case studies we are aware of,
a replica always spawns a full copy of itself, thus from the point of view of
simulation it is irrelevant, and it would be in any case captured by the identity
arrow on the category of replicas. The modelling of replica communication [7],
where the action of sending will play a larger role, is the subject of ongoing work.

Our construction of transition systems out of a category of elements follows
an already established pattern for pre-sheaves and simulation, most notably
in [17]. The distilling of labels is clearly reminiscent of the contexts as labels
paradigm advanced by Leifer and Milner [12], and it would fit in its less con-
strained version proposed in [1]. Since this was not the main methodological
issue of the paper, we adopted a presentation requiring some ingenuity.

References

1. Bonchi, F., Gadducci, F., Monreale, G.V.: A general theory of barbs, contexts, and
labels. ACM Transactions on Computational Logic 15(4), 35:1–35:27 (2014)

2. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. In: Jagannathan, S., Sewell, P. (eds.) POPL 2014. pp. 285–296.
ACM (2014)

3. Burckhardt, S., Gotsman, A., Yang, H.: Understanding eventual consistency. Tech.
Rep. MSR-TR-2013-39, Microsoft Research (2013)

4. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: speci-
fication, verification, optimality. In: Jagannathan, S., Sewell, P. (eds.) POPL 2014.
pp. 271–284. ACM (2014)

5. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: Aceto, L., de Frutos-Escrig, D. (eds.) CONCUR
2015. LIPIcs, vol. 42, pp. 58–71. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2015)

6. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Bressoud, T.C., Kaashoek, M.F. (eds.) SOSP 2007. pp.
205–220. ACM (2007)

7. Gadducci, F., Melgratti, H., Roldán, C.: On the semantics and implementation of
replicated data types. Science of Computer Programming 167, 91–113 (2018)

8. Gadducci, F., Melgratti, H.C., Roldán, C.: A denotational view of replicated data
types. In: Jacquet, J., Massink, M. (eds.) COORDINATION 2017. LNCS, vol.
10319, pp. 138–156. Springer (2017)

9. Gadducci, F., Melgratti, H.C., Roldán, C., Sammartino, M.: A categorical account
of replicated data types. In: Chattopadhyay, A., Gastin, P. (eds.) FSTTCS 2019.
LIPIcs, vol. 150, pp. 42:1–42:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019)

10. Gotsman, A., Burckhardt, S.: Consistency models with global operation sequencing
and their composition. In: Richa, A.W. (ed.) DISC 2017. LIPIcs, vol. 91, pp. 23:1–
23:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

11. Kaki, G., Earanky, K., Sivaramakrishnan, K.C., Jagannathan, S.: Safe replication
through bounded concurrency verification. In: OOPSLA 2018. PACMPL, vol. 2,
pp. 164:1–164:27. ACM (2018)

12. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer
(2000)

13. MacLane, S., Moerdijk, I.: Sheaves in geometry and logic: A first introduction to
topos theory. Springer (1992)

14. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer (2011)

15. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Tech. Rep. RR-7506, Inria–
Centre Paris-Rocquencourt (2011)

16. Sivaramakrishnan, K.C., Kaki, G., Jagannathan, S.: Declarative programming over
eventually consistent data stores. In: Grove, D., Blackburn, S. (eds.) PLDI 2015.
pp. 413–424. ACM (2015)

17. Sobociński, P.: Relational presheaves, change of base and weak simulation. Journal
of Computer and System Sciences 81(5), 901–910 (2015)

