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Abstract15

Replicated Data Types (rdts) have been introduced as a suitable abstraction for dealing with16

weakly consistent data stores, which may (temporarily) expose multiple, inconsistent views of their17

state. In the literature, rdts are commonly specified in terms of two relations: visibility, which18

accounts for the different views that a store may have, and arbitration, which states the logical order19

imposed on the operations executed over the store. Different flavours, e.g., operational, axiomatic20

and functional, have recently been proposed for the specification of rdts. In this work, we propose21

an algebraic characterisation of rdt specifications. We define categories of visibility relations and22

arbitrations, show the existence of relevant limits and colimits, and characterize rdt specifications23

as functors between such categories that preserve these additional structures.24
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1 Introduction34

The cap theorem establishes that a distributed data store can simultaneously provide35

two of the following three properties: consistency, availability, and tolerance to network36

partitions [8]. A weakly consistent data store prioritises availability and partition tolerance37

over consistency. As a consequence, a weakly consistent data store may (temporarily) expose38

multiple, inconsistent views of its state; hence, the behaviour of operations may depend39

on the particular view over which they are executed. Replicated data types (rdt) have40

been proposed as suitable data type abstractions for weakly consistent data stores. The41

specification of such data types usually takes into account the particular views over which42

operations are executed. A view is usually represented by a visibility relation, which is a43

binary, acyclic relation over the operations (a.k.a. events) executed by the system. The44
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Figure 1 A register specification

state of a store is described instead as a total order over the events, called arbitration,45

which describes the way in which conflicting concurrent operations are resolved. Different46

specification approaches for rdts are presented in the literature, all of them building on47

the notions of visibility and arbitration [2, 3, 4, 5, 7, 6, 9, 11, 13, 14]. A purely functional48

approach for the specification of rdts has been presented in [7, 6], where an rdt is associated49

with a function that maps each visibility relation into a set of arbitrations.50

Consider an rdt Register that represents a memory cell, whose content can be updated51

and read. Following the approach in [7], the rdt Register is specified by a function that52

maps visibility relations into sets of arbitrations: we call here such function SlwwR. Figure 1a53

illustrates the definition of SlwwR for the case in which the visibility relation involves two54

concurrent writes and a read. Events are depicted by pairs 〈operation, result〉 where wr(k)55

stands for an operation that writes the value k and rd stands for a read. The two writes are56

unrelated (i.e., they are not visible to each other), while the read operation sees both writes.57

The returned value of the read operation is 2, which coincides with one of the visible written58

values. According to Figure 1a, SlwwR maps such visibility graph into a set containing those59

arbitrations (i.e., total orders over the three events in the visibility relation) in which wr(1)60

precedes wr(2). Arbitrations may not reflect the causal ordering of events; in fact, the last61

two arbitrations in the right-hand-side of the equation in Figure 1a place the read before62

the operation that writes the read value 2. We remark that arbitrations do not necessarily63

account for real-time orderings of events: they are instead possible ways in which events can64

be logically ordered to explain a given visibility. For instance, the excluded arbitrations in the65

image of SlwwR are the total orders in which wr(2) precedes wr(1), i.e., the specification bans66

the behaviour in which a read operation returns a value that is different from the last written67

one. An extreme situation is the case in which the specification maps a visibility relation into68

an empty set of arbitrations, which means that events cannot be logically ordered to explain69

such visibility. For instance, the equation in Figure 1b assigns an empty set of arbitrations70

to a visibility relation in which the read operation returns a value that is different from the71

unique visible written value (i.e., it returns 0 instead of 1). In this way, the specification72

bans the behaviour in which a read operation returns a value that does not match a previous73

written value. As originally shown [7], this style of specification can be considered (and it74

is actually more general than) the model for the operational description of rdts proposed75

in [4]. We refer the reader to [6] for a formal comparison of the two different approaches.76

This work develops the approach suggested in [7] for the categorical characterisation77

of rdt specifications. We consider the category PIDag(L) of labelled, directed acyclic78

graphs and injective pr-morphisms, i.e., label-preserving morphisms that reflect directed79

edges, and the category SPath(L) of sets of labelled, total orders and ps-morphisms, i.e.,80

morphisms between sets of paths. A ps-morphism f : X1 → X2 from a set of paths X1 to a81

set of paths X2 states that any total order in X2 can be obtained by extending some total82

order in X1. In this work we show that a large class of specifications, dubbed coherent,83
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can be characterised functorially. Roughly, a coherent specification accounts for those rdts84

such that the arbitrations associated with a visibility relation can be obtained by extending85

arbitrations associated with “smaller” visibilities: as illustrated in [6], they correspond to86

what are called return value consistent rdts in [4]. We establish a bijection between functors87

and specifications, showing that a coherent specification induces a functor from PIDag(L)88

into SPath(L) that preserves colimits and binary pullbacks and vice versa.89

The paper has the following structure. Section 2 offers some preliminaries on categories90

of relations, which are used for proposing some basic results on categories of graphs and91

paths in Section 3. Section 4 recalls the set-theoretical presentation of rdts introduced in [6].92

Section 5 introduces our semantical model, the category of set of paths, describing some of its93

basic properties with respect to limits and colimits. In Section 6 we present some categorical94

operators for rdts, which are used in Section 7 to present our main characterisation results.95

The paper is closed with some final remarks, a comparison of the proposed constructions96

with those presented in [7], and some hints towards future work.97

2 Preliminaries on Relations98

Relations. Given a finite set E, a (binary) relation ρ over E is a subset ρ ⊆ E × E of the99

cartesian product of E with itself. We use the pair 〈E, ρ〉 to denote a relation ρ over E, in100

order to always have the set of events explicit, and simply ∅ to denote the empty relation.101

A subset E′ ⊆ E is downward closed with respect to ρ if ∀e ∈ E, e′ ∈ E′.e ρ e′ implies e ∈ E′
102

and, when ρ is clear, we write bec for the smallest downward closed set including e ∈ E.103

IDefinition 1 ((Binary Relation) Morphisms). A (binary relation) morphism f : 〈E, ρ〉 → 〈T, γ〉
is a function f : E→ T such that

∀e, e′ ∈ E. e ρ e′ implies f(e) γ f(e′)

A morphism f : 〈E, ρ〉 → 〈T, γ〉 is past-reflecting (shortly, pr-morphism) if

∀e ∈ E, t ∈ T. t γ f(e) implies ∃e′ ∈ E. e′ ρ e ∧ t = f(e′)

Note that both classes of morphisms are closed under composition: we denote as Bin the104

category of relations and their morphisms and PBin the sub-category of pr-morphisms.105

I Lemma 2 (Characterising pr-morphisms). Let f : 〈E, ρ〉 → 〈T, γ〉 be a morphism. If106

1. f(e) γ f(e′) implies e ρ e′, and107

2.
⋃

e∈E f(e) is downward closed,108

then it is a pr-morphism. If f is injective, then the converse holds.109

Proof. For ⇒), let us take e ∈ E and t ∈ T. If t γ f(e), then there exists e′ ∈ E such that110

t = f(e′) because of (2). By (1), f(e′) γ f(e) implies e′ ρ e.111

For⇐), by the definition of pr-morphism f(e) γ f(e′) implies ∃e ∈ E. e ρ e′ ∧ f(e) = f(e).
Since f is injective, e = e and hence e ρ e′. So, let T =

⋃
e∈E f(e). We want to show that

∀t ∈ T, t′ ∈ T . tγ t′ implies t ∈ T

The proof follows by contradiction. Assume that ∃t ∈ T, t′ ∈ T . t γ t′ ∧ t 6∈ T . By
definition of T ,∃e ∈ E such that f(e) = t′. Since f is a pr-morphism, then

t γ f(e) implies ∃e′ ∈ E. e′ ρ e ∧ t = f(e′)

Therefore t = f(e′) ∈ T , which contradicts the assumption t /∈ T . J112

FSTTCS 2019



41:4 A Categorical Account of Replicated Data Types

Clearly, Bin has both finite limits and finite colimits, which are computed point-wise as113

in Set. The structure is largely lifted to PBin.114

I Proposition 3 (Properties of PBin). The inclusion functor PBin → Bin reflects finite115

colimits and binary pullbacks.116

In other words, since Bin has finite limits and finite colimits, finite colimits and binary117

pullbacks in PBin always exist and are computed as in Bin. There is e.g. no terminal118

object, since morphisms in Bin into the singleton are clearly not past-reflecting.119

Monos in Bin are just morphisms whose underlying function is injective, and similarly in120

PBin, so that the inclusion functor preserves (and reflects) them.121

I Lemma 4 (Monos under pushouts). Pushouts in Bin (and thus in PBin) preserve monos.122

We now introduce labelled relations. Consider the forgetful functors Ur : Bin→ Set and123

Up : PBin→ Set, the latter factoring through the inclusion functor PBin→ Bin. Given a124

set L of labels, we consider the comma categories Bin(L) = Ur ↓ L and PBin(L) = Up ↓ L:125

finite colimits and binary pullbacks always exist and are essentially computed as in Bin.126

Explicitly, an object in Ur ↓ L is a triple (E, ρ, λ) for a labeling function λ : E → L. A127

label-preserving morphism (E, ρ, λ) → (E′, ρ′, λ′) is a morphism f : (E, ρ) → (E′, ρ′) such128

that ∀s ∈ E. λ(s) = λ′(f(s)). Moreover, finite colimits and binary pullbacks exist and are129

computed as in Bin. Similar properties hold for the objects and the morphisms of Up ↓ L.130

3 Categories of Graphs and Paths131

We now move to introduce specific sub-categories that are going to be used for both the132

syntax and the semantics of specifications.133

I Definition 5 (PDag). PDag is the full sub-category of PBin whose objects are directed134

acyclic graphs.135

In other terms, objects are relations whose transitive closures are strict partial orders.136

I Remark 6. The full sub-category of Bin whose objects are directed acyclic graphs is not137

suited for our purposes, since e.g. it does not admit pushouts, not even along monos. The138

one with pr-morphisms is much more so, still remaining computationally simple.139

I Proposition 7 (Properties of PDag). The inclusion functor PDag→ PBin reflects finite140

colimits and binary pullbacks.141

We now move to consider paths, i.e., relations that are total orders.142

I Definition 8 (Path). Path is the full sub-category of Bin whose objects are paths.143

Note that defining Path as only containing pr-morphisms would be too restrictive, since144

there exists a pr-morphism between two paths if and only if one path is a prefix of the other.145

I Proposition 9 (Properties of Path). The inclusion functor Path → Bin reflects finite146

colimits.147

As for relations, we consider suitable comma categories in order to capture labelled paths148

and graphs. In particular, we use the forgetful functors Urp : Path→ Set and Upd : PDag→149

Set: for a set of labels L we denote PDag(L) = Urp ↓ L and Path(L) = Upd ↓ L. Once more,150

finite colimits and binary pullbacks always exist and are essentially computed as in Bin.151
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4 Replicated Data Type Specification152

We briefly recall the set-theoretical model of replicated data types (rdt) introduced in [6].153

Our main result is its categorical characterisation, which is given in the following sections.154

First, some notation. We denote a graph as the triple 〈E ,≺, λ〉 and a path as the triple155

〈E ,≤, λ〉, in order to distinguish them. Moreover, given a graph G = 〈E ,≺, λ〉 and a subset156

E ′ ⊆ E , we denote by G|E′ the obvious restriction (and the same for a path P).157

We now define a product operation on a set of paths X = {〈Ei,≤i, λi〉}i. First, we say158

that the paths of a set X are compatible if ∀e, i, j. e ∈ Ei ∩ Ej implies λi(e) = λj(e).159

I Definition 10 (Product). Let X be a set of compatible paths. The product of X is160 ⊗
X = {P | P is a path over

⋃
i

Ei and P|Ei
∈ X }161

Intuitively, the product of paths is analogous to the synchronous product of transition162

systems, in which common elements are identified and the remaining ones can be freely163

interleaved, as long as the original orders are respected. A set of sets of paths X1,X2, . . . is164

compatible if
⋃
i Xi is so. In such case we can define the product

⊗
i Xi as

⊗ ⋃
i Xi.165

Now, let us further denote with G(L) and P(L) the sets of (finite) graphs and (finite)166

paths, respectively, labelled over L and with ε the empty graph. Also, when the set of labels167

L is chosen, we let G(E , λ) and P(E , λ) the sets of graphs and paths, respectively, whose168

elements are those in E and are labelled by λ : E → L.169

I Definition 11 (Specifications). A specification S is a function S : G(L)→ 2P(L) such that170

S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG).171

In other words, a specification S maps a graph (interpreted in terms of the visibility172

relation of a rdt) to a set of paths (that is, the admissible arbitrations of the rdt). Indeed,173

note that P ∈ S(G) is a path over EG, hence a total order of the events in G.174

As shown in [6], Definition 11 offers an alternative characterisation of rdts [4] for a175

suitable choice of the set of labels. In particular, an rdt boils down to a specification labelled176

over pairs 〈operation, value〉 that is saturated and past-coherent. The former property is a177

technical one: roughly, if G′ is an extension of G with a fresh event e, then the admissible178

arbitrations that a saturated specification S assigns to G′ (i.e., the set of paths S(G′)) are179

included in the admissible arbitrations of G saturated with respect to e, i.e., all the paths180

that extends a path in S(G) with e inserted at an arbitrary position. Coherence instead is181

fundamental and expresses that admissible arbitrations of a visibility graph can be obtained182

by composing the admissible arbitrations of smaller visibilities.183

I Definition 12 ((Past-)Coherent Specification). Let S be a specification. We say that S is184

past-coherent (briefly, coherent) if185

∀G 6= ε. S(G) =
⊗
e∈EG

S(G|bec)186

Explicitly, in a coherent specification S the arbitrations of a configuration G (i.e., the set187

of paths S(G)) are the composition of the arbitrations associated with its sub-graphs G|bec.188

Next example illustrates a coherent specification for the Register rdt.189

FSTTCS 2019



41:6 A Categorical Account of Replicated Data Types

I Example 13 (Register). Fix the set of labels L = {〈wr(k), ok〉, 〈rd, k〉 | k ∈ N} ∪ {〈rd,⊥〉}.190

Then, the specification of the rdt Register is given by the function SlwwR defined as191

P ∈ SlwwR(G) iff ∀e ∈ EG.


λ(e) = 〈rd,⊥〉 implies ∀e′ ≺G e, k. λ(e′) 6= 〈wr(k), ok〉
∀k. λ(e) = 〈rd, k〉 implies ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉 and

∀e′′ ≺G e, k′ 6= k. e′ <P e′′ implies λ(e′′) 6= 〈wr(k′), ok〉
192

Intuitively, a visibility graph G is mapped to a non-empty set of arbitrations (i.e.,193

SlwwR(G) 6= ∅) only when each event e in G associated with a read operation has a re-194

turn value k that matches the value written by the greatest event e′ (according to <P). The195

result of a read is undefined (i.e., ⊥) when it does not see any write (first condition).196

5 The model category197

In order to provide a categorical characterisation of coherent specifications, we must first198

define precisely the model category. So far, we know that its objects have to be sets of199

compatible paths. We fix a set of labels L, and we first look at a free construction for paths,200

and then we turn our attention to morphisms.201

5.1 Saturation202

I Definition 14 (Path saturation). Let P be a path and f : (EP, λP) → (E , λ) a function
preserving labels. The saturation of P along f is defined as

sat(P, f) = {Q | Q ∈ P(E , λ) and f induces a morphism f : P→ Q}

Saturation is generalised to sets of paths X ⊆ P(E , λ) as
⋃

P∈X sat(P, f).203

Note that, should f not be injective, it could be that sat(P, f) = ∅.204

I Example 15. Consider the injective, label-preserving function f from {〈wr(1), ok〉, 〈wr(2), ok〉}205

to {〈wr(1), ok〉, 〈wr(2), ok〉, 〈rd, 2〉}. Then, we have206

sat

Ö 〈wr(1), ok〉

〈wr(2), ok〉

 , f

è
=


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉}

,

〈wr(1), ok〉

〈rd, 2〉}

〈wr(2), ok〉

,

〈rd, 2〉}

〈wr(1), ok〉

〈wr(2), ok〉

207

Intuitively, saturation adds 〈rd, 2〉 – and in general events not in the image of f – to the208

original path in all possible ways, preserving the order of original events.209

I Definition 16 (Path retraction). Let Q be a path and f : E → EQ a function. The retraction210

of Q along f is defined as211

ret(Q, f) = {P | P ∈ P(E , λ) and f induces a morphism f : P→ Q}212

The notion of retraction is extended to sets of paths X ⊆ P(E , λ) as
⋃

Q∈X ret(Q, f).213

Note that λ is fully characterised as the restriction of λQ along the mapping. Should f be214

injective, ret(Q, f) would be a singleton, and if f is an inclusion, then ret(Q, f) = Q|E .215

We may now start considering the relationship between the two notions.216

I Lemma 17. Let X1 ⊆ P(E1, λ1) be a set of paths and f : (E1, λ1) → (E2, λ2) a function217

preserving labels. Then X1 ⊆ ret(sat(X1, f), f). If f is injective, then the equality holds.218
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I Lemma 18. Let X2 ⊆ P(E2, λ2) be a set of paths and f : E1 → E2 a function. Then219

X2 ⊆ sat(ret(X2, f), f).220

We say that an injective function f is saturated with respect to X2 if the equality holds.221

I Example 19. Consider the set of paths X1 and X2 and the pr-morphism f below222

X1 =


〈wr(1), ok〉

〈wr(2), ok〉

 X2 =


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

 f :
〈wr(1), ok〉

〈wr(2), ok〉
→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

223

the underlying function f (defined in Example 15) is not saturated with respect to X2 because224 
〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

 6= sat(ret(


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

, f), f) = sat(


〈wr(1), ok〉

〈wr(2), ok〉

, f)225

In fact, the ps-morphism f : X1 → X2 only adds the new event 〈rd, 2〉 on top of the path in226

X1, thus making it a topological ps-morphism (see Section 7.3 later on).227

5.2 From saturation to categories228

We can exploit saturation to get a simple definition of our model category.229

I Definition 20 (ps-morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2) be sets of paths. A230

path-set morphim (shortly, ps-morphism) f : X1 → X2 is a function f : (E1, λ1) → (E2, λ2)231

preserving labels such that X2 ⊆ sat(X1, f).232

Intuitively, there is a ps-morphism from the set of paths X1 to the set of paths X2 if any233

path in X2 can be obtained by adding events to some path in X1. This notion captures the234

idea that arbitrations of larger visibilities are obtained as extensions of smaller visibilities.235

I Example 21. Consider the following three sets and the function f from Example 15236

X1 =


〈wr(1), ok〉

〈wr(2), ok〉

 X2 =


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

,

〈wr(1), ok〉

〈rd, 2〉

〈wr(2), ok〉

 X3 =


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

,

〈wr(2), ok〉

〈rd, 2〉

〈wr(1), ok〉

237

Now, f induces a ps-morphism f : X1 → X2 because X2 ⊆ sat(X1, f) (the latter is shown in238

Example 15). On the contrary, there is no ps-morphism from X1 to X3: the rightmost path239

of X3 cannot be obtained by extending a path of X1 with an event labelled by 〈rd, 2〉.240

I Definition 22 (Sets of Paths Category). We define SPath(L) as the category whose objects241

are sets of paths labelled over L and arrows are ps-morphisms.242

I Proposition 23 (Properties of SPath). The category SPath(L) has finite colimits along243

monos and binary pullbacks.244

Proof. (Strict) initial object. The (unique) initial object is 〈∅, {ε}, ∅〉, with ε ∈ P(∅, ∅) the245

empty path. Let X ⊆ P(E , λ) and ! : ∅ → E the unique function. We have a function246

! : (∅, ∅)→ (E , λ) such that X ⊆ sat({ε}, !) = P(E , λ).247

Binary Pushouts. Let X ,X1, and X2 be sets of paths and fi : X → Xi ps-morphisms.248

Consider the underlying functions fi : E → Ei and their pushout f′
i : Ei → E1 +E E2 in the249

category of sets: it induces a pushout f′
i : Xi → sat(X1, f′

1) ∩ sat(X2, f′
2) in SPath(L).250

FSTTCS 2019



41:8 A Categorical Account of Replicated Data Types

Binary Pullbacks. Let X ,X1, and X2 be sets of paths and fi : Xi → X ps-morphisms.251

Consider the underlying functions fi : Ei → E and their pullback f′
i : E1 ×E E2 → E in the252

category of sets: it induces a pullback f′
i : ret(X1, f′

1) ∪ ret(X2, f′
2) → Xi in SPath(L).253

J254

The above characterisation of pushouts is enabled by the fact that we considered injective255

functions. To help intuition, we now instantiate that characterisation to suitable inclusions.256

I Lemma 24. Let fi : X → Xi be ps-morphisms such that the underlying functions fi : E → Ei257

are inclusions and E = E1 ∩ E2. Then their pushout is given by f′
i : Xi → X1 ⊗X2.258

Proof. By definition X1 ⊗X2 = {P | P is a path over
⋃
i Ei and P|Ei

∈ Xi}. Note also that259

sat(Xi, f′
i) =

⋃
Q∈Xi
{P | P ∈ P(

⋃
i Ei,

⋃
i λi) and f′

1 induces a path morphism f′
i : P → Q}.260

Since f′
i is an inclusion, the latter condition equals to P|Ei

= Q, thus the property holds. J261

I Example 25. Consider the following ps-morphisms262 
〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

←

〈wr(1), ok〉

〈wr(2), ok〉

→

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

,

〈wr(2), ok〉

〈wr(1), ok〉

〈rd, 1〉

263

then, the pushout is given by the following ps-morphisms264


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

→



〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

〈rd, 2〉

,

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 2〉

〈rd, 1〉


←


〈wr(1), ok〉

〈wr(2), ok〉

〈rd, 1〉

,

〈wr(2), ok〉

〈wr(1), ok〉

〈rd, 1〉

265

An analogous property holds for pullbacks. Let fi : Xi → X be ps-morphisms such that266

the underlying functions are inclusions: the pullback is given as f′
i :

⋃
i Xi|E1∩E2

→ Xi. In267

particular, the square below is both a pullback and a pushout.268 ⋃
i Xi|E1∩E2

X1

X2 X1 ⊗X2

269

6 Structure and Operators for Visibility270

We now study the category of visibility relations. We first introduce an operation that will271

be handy for our categorical characterisation. We say that a graph G is rooted if there exists272

a (necessarily unique) event e ∈ EG such that G = G|bec.273

I Definition 26 (Extension). Let G = 〈E ,≺, λ〉 and E ′ ⊆ E. We define the extension of G274

over E ′ with ` as the graph G`E′ = 〈E>,≺ ∪ (E ′ × {>}), λ[> 7→ `]〉.275

Here, E> denotes the extension of the set E with a new event >, labelled by λ[> 7→ `]] into276

`. Intuitively, G`E′ is obtained by adding to the visibility relation G a new event “seeing” some277

events in E ′. We call the inclusion G→ G`E′ an extension morphism. Should G`E′ be rooted,278

we call it a root extension of G, and the associated inclusion a root extension morphism.279
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I Proposition 27. Rooted graphs form a family of separators of PDag(L).280

Proof. We need to show that for any pair of pr-morphisms f1, f2 : G1 → G2 such that f1 6= f2281

there is a rooted graph G and a morphism f : G→ G1 such that f; f1 6= f; f2. Given e ∈ EG1282

such that f1(e) 6= f2(e), it suffices to consider the pr-morphism f : G1|bec → G1. J283

We now further curb the arrows in PDag(L) to monic ones. Intuitively, we are only284

interested in what happens if we add further events to visibility relations. We thus consider285

the sub-category PIDag(L) of direct acyclic graphs and monic pr-morphisms. Note that the286

chosen morphism f in the proof of Proposition 27 is mono, since morphisms in PDag(L)287

are monic if and only if the underlying function is injective. We can then show that rooted288

graphs are also a family of generators for the sub-category PIDag(L).289

We first need a technical lemma.290

I Lemma 28 (Monos under pushouts, 2). Pushouts in PDag(L) preserve monos.291

We can then state an important characterisation of PIDag(L).292

I Proposition 29. PIDag(L) is the smallest sub-category of PDag(L) containing all root293

extension morphisms and closed under finite colimits.294

Proof. First, note that, since pushouts in PDag(L) preserve monos, the smallest sub-295

category of PDag(L) containing all root extensions and closed under finite colimits is surely296

a sub-category also of PIDag(L). So, given a monic pr-morphism f : G1 → G2, we need to297

prove that it can be generated from root extension morphisms via colimits. We proceed by298

induction on the cardinality of EG2 .299

If the cardinality is 0, then f must be the identity of the empty graph. Otherwise,300

consider G2 and assume that it is rooted with root e. Now, if e ∈ img(f), since the image of301

a pr-morphism is downward closed, it turns out that f is the identity of G2. If it is not in the302

image, then f can be decomposed as G1 → (G2 \ e)→ G2: the left-most is given by induction,303

while the right-most is a root extension morphism. Without loss of generality, let us assume304

that G2 has two distinct roots, namely e1 and e2, and that the image of f is contained in305

G2|be1c. Now, f can be decomposed as G1 → G2|be1c → G2: the left-most is given by induction,306

while the right-most is obtained via the pushout of the span G2|be1c ∩ G2|be2c → G2|beic. J307

7 A categorical correspondence308

It is now the time for moving towards our categorical characterisation of specifications.309

In this section we will show that coherent specifications induce functors preserving the310

relevant categorical structure (soundness) and, conversely, that a certain class of functors311

(basically, those preserving finite colimits and binary pullbacks) induce coherent specifications312

(completeness). Finally, we will prove that these functions between functors and specifications313

are mutually inverse, establishing a one-to-one correspondence (up-to isomorphism).314

We first provide a simple technical result for coherent specifications.315

I Lemma 30. Let S be a coherent specification and E ⊆ EG. If E is downward closed, then316

S(G)|E ⊆ S(G|E).317

Proof. Let E be downward closed, and note that this amounts to requiring E =
⋃
e∈E bec,318

hence for all e ∈ E we have that (G|E)|bec = G|bec. By the latter and by coherence we have319

S(G)|E = (
⊗

e∈EG
S(G|bec))

∣∣∣
E
and S(G|E) =

⊗
e∈E S(G|bec). Note that (

⊗
e∈EG
S(G|bec))

∣∣∣
E
⊆320 ⊗

e∈E S(G|bec) because a path in the former can always be restricted to a suitable path with321

fewer events on the latter (the converse in general does not hold). J322
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7.1 Soundness323

The notion of specification introduced in Definition 11 is oblivious to the existence of324

morphisms between graphs. In the following we impose a minimal consistency requirement,325

i.e., that a specification maps isomorphic graphs to isomorphic sets of paths, along the same326

isomorphism on events. That is, if there exists an isomorphism in PDag from G1 to G2 with327

underlying bijection f : EG1 → EG2 , then for all specifications S there is an isomorphism in328

SPath(L) from S(G1) to S(G2) with the same underlying function.329

I Proposition 31 (functors induced by specifications). A coherent specification S induces a330

functor M(S) : PIDag(L)→ SPath(L).331

Proof. For G we define M(S)(G) as S(G) and for f : G → G′ we define M(S)(f) as the ps-332

morphism with underlying injective function f : (EG, λG) ↪→ (EG′ , λG′). The proof boils down333

to showing that f really is a ps-morphism from S(G) into S(G′), i.e., S(G′) ⊆ sat(S(G), f)334

and, since we are considering specifications preserving isomorphisms, we can restrict our335

attention to the case where f is an inclusion.336

Since f is a pr-morphism,
⋃

e∈EG
f(e) is downward-closed in G′ and thus by Lemma 30337

we have S(G′)|EG
⊆ S(G′|EG

) = S(G), the latter equality given by coherence. Now, consider338

a path P ∈ S(G′). Since P|EG
∈ S(G), we have P ∈ sat(S(G), f), because saturation adds339

missing events – namely those in EG′ \ EG – to P|EG
in all possible ways. Therefore we can340

conclude S(G′) ⊆ sat(S(G), f). J341

It is a well-known fact that the category of sets and injective functions lacks pushouts.342

The same also holds for PIDag(L). However, recall now that pushouts in PDag(L) preserve343

monos (Lemma 28). Thus in the following we say that a functor F : PIDag(L)→ SPath(L)344

weakly preserves finite pushouts (and in fact, finite colimits) if any commuting square in345

PIDag(L) that is a pushout (via the inclusion functor) in PDag(L) is mapped by F to a346

pushout in SPath(L).347

I Theorem 32. Let S be a coherent specification. The induced functor M(S) : PIDag(L)→348

SPath(L) weakly preserves finite colimits and preserves binary pullbacks.349

Proof. The initial object is easy, since it holds by construction. As for pushouts and pullbacks:350

since S is coherent, it boils down to Lemma 24. J351

7.2 Completeness352

It is now time for moving to the completeness results of our work, showing (a few alternatives353

on) how to obtain a specification from a functor.354

I Theorem 33. Let F : PIDag(L) → SPath(L) be a functor such that F(G) ⊆ P(EG, λG).355

If F weakly preserves finite colimits and preserves binary pullbacks, it induces a coherent356

specification S(F).357

Proof. Let S(F)(G) = F(G). We shall show that F(G) is coherent. Consider the following358

pushout in PDag(L)359

G|be1c∩be2c G|be2c

G|be1c G|be1c∪be2c

(7.1)360

361
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Since F preserves pullbacks, thus monos, and weakly preserves pushouts, this diagram is362

mapped by F to the following pushout in SPath(L)363

F(G|be1c∩be2c) F(G|be2c)

F(G|be1c) F(G|be1c∪be2c)
(7.2)364

365

where all underlying functions between events are inclusions. By Lemma 24 we have that366

F(G|be1c∪be2c) ' F(G|be1c)⊗ F(G|be2c)367

Since clearly G = G|⋃
e∈EG

bec, by associativity of pushouts we obtain coherence368

F(G) '
⊗
e∈EG

F(G|bec)369

Isomorphism preservation follows from F being a functor. J370

Combined with Theorem 32, the result above intuitively tells us that the coherence371

of a specification roughly corresponds to the weak preservation of colimits. However, the372

set-theoretical requirement F(G) ⊆ P(EG, λG) is still unsatisfactory, yet apparently unavoidable,373

because a generic F could associate any set of paths to a graph. We can sharpen the result374

by requiring functors to preserve specific properties for suitable arrows of PIDag(L). The375

candidates are root extension morphisms, given the properties shown in Section 6. In order376

to define the functors, we also need to consider a suitable subset of the arrows of SPath(L).377

I Definition 34 (Saturated specifications). Let S be a specification. It is saturated if for all378

graphs G and extensions G`E the inclusion f : EG → EG` is saturated with respect to S(G`E) (see379

Lemma 18), that is380

∀G, E , `. S(G`E) = sat(ret(S(G`E), f), f)381

A saturation ps-morphism (along `) is a saturated ps-morphism f : X1 → X2 with382

underlying function (E , λ)→ (E>, λ[> 7→ `]). We can now prove an instance of Theorem 33383

concerning saturated specifications.384

I Proposition 35. Let F : PIDag(L) → SPath(L) be a functor mapping root extension385

morphisms into saturation ps-morphisms (along the same labels). If F weakly preserves finite386

colimits, it induces a saturated, coherent specification S(F).387

Proof. We first show that F preserves monos, which renders the assumption of Theorem 33388

about preservation of pullbacks redundant. We will essentially follow the proof of Proposi-389

tion 29. Given f : G1 → G2 in PIDag(L), we proceed by induction on the cardinality of EG2 .390

If EG2 is 0, i.e., it is the initial object, then f is the identity on 0, and the claim follows by391

functors preserving identities. Suppose now that G2 is rooted with root e. If e ∈ img(f),392

then f again is the identity. Otherwise, f can be decomposed as G1 → (G2 \ e) → G2: the393

left-most one satisfies the induction hypothesis, and the right-most one is a root extension394

morphism, which by hypothesis is mapped to a (monic) saturation ps-morphism. Therefore,395

by functoriality of F, the claim holds for the composition of these morphisms. If G2 is not396

rooted, then f can be similarly decomposed as G1 → G2|be1c → G2. By induction the claim397

holds for the left-most morphism. The right-most one is obtained via a pushout of the form398

(7.1), which is mapped by F to a pushout of the form (7.2), because F (weakly) preserves finite399
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colimits. By induction hypothesis, the span of this pushout consists of monic ps-morphisms,400

therefore we use Lemma 24 to conclude that the pushout morphisms are monic as well, hence401

the right-most morphism satisfies our claim. Again, the claim for the whole of f follows from402

functoriality of F. A similar inductive argument can be used to show that F(G) is a set of403

paths over (EG, λG) (up to a label-preserving isomorphism of events). Therefore we can now404

re-use the proof of Theorem 33 and obtain that S(F) is a coherent specification.405

It remains to be shown that S(F) is saturated, that is F(G`E) = sat(ret(F(G`E), f), f).406

If G`E is rooted, this follows from F mapping root extensions to saturation ps-morphisms.407

Otherwise, by coherence, F(G`E) can be decomposed into the product
⊗

e∈(EG)>
F(G`E

∣∣
bec). For408

each component of the product we have a root extension G`E
∣∣
bec \e→ G`E

∣∣
bec, which is mapped409

by F to a saturation ps-morphism, therefore we have F(G`E
∣∣
bec) = sat(ret(F(G`E

∣∣
bec), fe), fe),410

where fe is the underlying function between events of the root extension. Saturation of F(G`E)411

follows by computing the product of these sets of paths. J412

7.3 More Completeness413

The need of finding a suitable image for root extension morphisms allows for alternative414

choices. To this end, we introduce a different subset of the arrows of SPath(L).415

I Definition 36 (Path extension/prefixing). Let P be a path and f : (EP, λP) → (E , λ) a416

function preserving labels. The extension of P along f is defined as417

ext(P, f) = {Q | Q ∈ P(E , λ) and f induces a pr-morphism f : P→ Q}418

Similarly, let Q be a path and f : E → EQ a function preserving labels. The prefixing of Q419

along f is defined as420

pre(Q, f) = {P | P ∈ P(E , λ) and f induces a pr-morphism f : P→ Q}421

Both definitions immediately extend to sets of paths. Should f be injective, pre(Q, f)422

would be a singleton, and if f is an inclusion, then pre(Q, f) = Q|E , for the latter a prefix of423

Q. Also, note that similarly P has to be a prefix for all the paths in ext(P, f).424

I Example 37. A topological specification StopR for a Register can be defined as SlwwR in
Example 13 with the additional requirement that paths are topological orderings of visibilities

P ∈ StopR(G) iff P ∈ SlwwR(G) and ≺G ⊆ ≤P

In this way, StopR(G) excludes e.g. the two right-most arbitrations of the equation in Figure 1a.425

I Definition 38 (Topological specifications). Let S be a specification. It is topological if426

∀G, E , `. S(G`E) = ext(pre(S(G`E), f), f)427

A topological ps-morphism (along `) is a ps-morphism f : X1 → X2 with underlying428

function (E , λ) → (E>, λ[> 7→ `]) such that X2 = ext(pre(S(X2), f), f). The name is429

directly reminiscent of what are called topological rdts in [10, 5], and in fact it similarly430

guarantees that arbitrations preserve the visibility order. We can thus prove another instance431

of Theorem 33, now concerning topological specifications.432

I Proposition 39. Let F : PIDag(L) → SPath(L) be a functor mapping root extension433

morphisms into topological ps-morphisms (along the same labels). If F weakly preserves finite434

colimits, it induces a topological, coherent specification S(F).435
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7.4 Interchangeability of Functors and Coherent Specifications436

The connection between the construction of Theorem 32 and Theorem 33 is quite tight, and437

in fact induces a one-to-one correspondence between functors and coherent specifications.438

I Theorem 40. Let S be a coherent specification. Then S(M(S)) = S. Conversely, let439

F : PIDag(L) → SPath(L) be a functor verifying the hypothesis of Theorem 33. Then440

M(S(F)) ' F.441

Proof. We first show that M(S(F)) ' F. For notational convenience, we denote M(S(F))442

by M′. We will show the existence of a natural isomorphism ϕ : M′ ⇒ F. By definition,443

we have M′(G) = S(F)(G) = F(G), therefore we can define ϕG = IdF(G). We need to prove444

that it is natural, which in this case amounts to showing M′(f) = F(f), for f : G → G′ in445

PIDag(L). This follows from M′(f) and F(f) having the same underlying function between446

events, namely the inclusion (EG, λG)→ (EG′ , λG′).447

Now we show that S(M(S)) = S for any coherent specification S. This follows directly448

from the definition of M and S. In fact, S(M(S))(G) = M(S)(G) = S(G). J449

The one-to-one correspondence can be lifted to the specific classes of saturated/topological450

coherent specifications and to the functors of Proposition 35/Proposition 39, respectively.451

However, what is most relevant is the fact the interchangeability allows one to leverage the452

categorical machinery of the functor category for providing operators on specifications.453

I Remark 41. Besides coherence, one of the keys of the previous correspondence is the (quite454

reasonable) choice of specifications that preserve isomorphisms. In general terms, whenever455

one needs to consider the relationship between different specifications, it is necessary to take456

into account how the underlying sets of events are related. This is quite easy to accomplish457

if we move to the functorial presentation. For example, we can say that a specification S1458

refines a specification S2 if S1(G) ⊆ S2(G) for all graphs G. However, this is a very concrete459

characterisation: it would be more general to check for the existence of a ps-morphism460

S2(G2)→ S1(G1) whose underlying function f : EG2 → EG1 is a bijection, in order to abstract461

from the identities of the events. In this case, a further constraint would be that f is462

preserved along the image of the morphisms in PIDag(L). These requirements boil down to463

the existence of a natural transformation M(S2)→M(S1).464

8 Conclusions and Further Works465

In this paper we have provided a functorial characterisation of rdt specifications. Our466

starting point is the denotational approach proposed in [7, 6], in which rdt specifications467

are associated with functions mapping visibility graphs into sets of admissible arbitrations468

that are also saturated and coherent, and where a preliminary functorial correspondence was469

proposed. In this paper we streamlined and expanded the latter result. We considered the470

category PDag(L) of labelled, acyclic graphs and pr-morphisms for representing visibility471

graphs. We equip PDag(L) with operators that model the evolution of visibility graphs472

and we show that the sub-category PIDag(L) of monic morphisms can be generated by the473

subset of root extensions via pushouts. For arbitrations, we take SPath(L), which is the474

category of sets of labelled, total orders and ps-morphisms. Then, we show that each coherent475

specification mapping isomorphic graphs into isomorphic set of paths induces a functor M(S) :476

PIDag(L)→ SPath(L). Conversely, we prove that a functor F : PIDag(L)→ SPath(L)477

that preserves finite colimits and binary pullbacks induces an coherent specification S(F).478

Moreover, M(S) and S(F) are shown to be inverses of each other.479
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With respect to the categorical results expressed in [7], besides the additional charac-480

terisation of topological specifications, the key improvement has been the proof that the481

coherence of specifications has a precise counterpart in terms of the weak preservation of482

colimits on their functorial presentations, as stated by Theorem 32 and Theorem 33. We thus483

removed the set-theoretical requirements occurring e.g. in [7, Section 5.3], as witnessed by the484

definition of coherent functor there. We believe that this purely functorial characterisation of485

rdts, as further witnessed by Proposition 35 and Proposition 39, provides an ideal setting486

for the development of techniques for handling rdt composition, as briefly pointed out by487

the functorial characterisation of refinement between specifications. Our long term goal is to488

equip rdt specifications with a set of operators that enables us to specify and reason about489

complex rdts compositionally, i.e., in terms of their constituent parts. We aim at providing490

a uniform formal treatment to the compositional approaches proposed in [1, 10, 12].491
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